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Probabilistic expert systems are intended to provide reasoned guidance in complex
environments characterized by extensive uncertainty. An explicit ‘causal’ model is
constructed for the process being observed, in which an acyclic directed graph is used
to express conditional independence assumptions about variables, and probability
assessments specify a full joint probability distribution. The resulting graphical
structure can cope with a range of issues that arise in realistic modelling. Here we
consider a particular example of assessing the chance that a suspected adverse
reaction is due to a particular drug under suspicion. The background biological
knowledge provides an appropriate model and probability assessments are obtained
from expert microbiologists. The model allows a variety of interpretations for
‘causality ’. Details of the graphical and computational algorithms used to perform
efficient calculations of conditional probabilities on complex graphical structures are
provided and illustrated with the example. Further developments should allow
updating of the risk parameters in the light of a series of case reports, and may form
the basis for a flexible expert system for causality assessment and post-marketing
surveillance.
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1. Introduction

Expert systems are computer programs that are intended to provide reasoned
guidance in complex situations. Uncertainty pervades many applications, due to
missing information or an inability to build a purely logical model for the process
being studied, and a variety of approaches have been suggested for dealing with this
problem: fuzzy logic, certainty factors, non-monotonic reasoning, belief functions
have all been suggested ; see Shafer & Pearl (1990) for a wide collection of papers. The
probabilistic approach has been hampered by apparent computational difficulties,
but recent developments have now made it feasible to deal with real applications
using specialist software for probabilistic reasoning.

In this paper we select a particular example to illustrate the methodology, which
emphasizes the use of background scientific knowledge as a basis for a model that can
be used for handling individual cases in a coherent way. The problem is in the context
of routine post-marketing surveillance of pharmaceutical products, which requires
the processing of reports of suspected adverse reactions. The accurate identification
of the cause of the reaction is of great importance both to the pharmaceutical
industry and to regulatory authorities, and yet the poor quality of the received data
can make such ‘causality assessment’ exceptionally difficult.
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388 D. J. Spriegelhalter and others

In the next section we briefly review current methods of causality assessment,
including a probabilistic procedure, and in §3 we introduce a specific problem
concerning the development of a diarrhoeal reaction (pseudomembranous colitis
(pmc)) following antibiotic therapy. In §§4 and 5 we step through the stages in
representing the PMc problem as a ‘ causal network’, showing how the basic structure
can be extended in a modular fashion to provide an increasingly realistic and
complex model. Our description emphasizes the exploratory nature of our model
building but, while certainly not claiming to have a definitive representation of the
process under study, we hope to demonstrate the concise manner in which complex
phenomena can, with care, be modelled by this approach. In §6 we summarize
technical aspects of handling causal network representations of disease processes
that have been developed in the context of expert systems, emphasizing the intuitive
graphical structure and its re-representation for computational purposes.

We then give an example based on an actual case report, and demonstrate
sensitivity analysis of the conclusions to assumptions about the context in which the
reaction developed.

The conclusions that the model draws about the drug responsible for a reaction in
a specific patient depend crucially on the assumptions concerning the potential of
that drug to initiate the chain of events that led to the reaction, and these
assumptions are open to question. Thus, while identifying the cause in individual
cases is certainly important, it is even more vital to use the reports to learn more
about the propensity of a drug to cause harm. This inverse process is difficult in view
of the mainly highly selected nature of the reports that are received, but some
tentative suggestions are made in our concluding section.

The general framework of our approach is currently being explored in a variety of
applications, which include the diagnosis of congenital heart disease (Spiegelhalter &
Cowell 1991), monitoring in anaesthesia (Beinlich et al. 1989), diagnosis of
neurological disorders (Andreassen et al. 1989) and decision making in diabetes
(Andreassen et al. 1991). Each of these applications requires probabilistic identi-
fication of an underlying causal mechanism that will best explain the observed
constellation of findings on individual cases; they are not concerned with general
identification of causal mechanisms for populations. This paper emphasizes the
technical issues: Hutchinson et al. (1991b6) and Cowell et al. (1991), respectively,
discuss our problem from the medical and computing points of view.

2. Causality assessment: background and an example

The drug surveillance group of a pharmaceutical company or regulatory authority
will regularly receive reports of adverse clinical events that are suspected to be
reactions to previous therapy. The reports will usually give some background
information on the patient, the date and type of reaction, the dates on which the
suspected drug was taken, and possibly the effects of stopping the drug
(‘dechallenge’). However, vital information is often missing, such as other drugs
being taken and the clinical context in which the reaction occurred.

Four basic methods for processing these reports can be identified (Hutchinson &
Lane 1989). First, the global approach requires the assessor to examine the evidence
and make an intuitive overall judgement as to whether the reaction was
certainly /probably/possibly /unlikely to have been caused by the drug in question.
The irreproducibility of such an approach has been shown in observer agreement
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Probabilistic expert systems 389

studies (Karch et al. 1976), and this has led to two more structured procedures. The
algorithmic, or flowchart, method requires the assessor to step through a sequence of
questions that logically lead to a conclusion. For example, a U.S. Food and Drug
Administration algorithm (Turner 1984) first asked if the current has a reasonable
temporal association from the drug, and if so it asked if there was a dechallenge from
the drug (i.e. did the reaction cease when the drug was stopped); if this information
is not available, the algorithm immediately classified the causal relationship as
‘possible” and asked no more questions.

Such algorithms seem unnecessarily rigid and make limited use of available
information ; this has led to scoring systems in which points are accumulated from
aspects of the case evidence, and if the total points lie in a certain interval then the
assessment is ‘probable’, etc. (Venulet 1984). Hutchinson & Lane (1989) have
pointed out that such scores are arbitrary and ignore the relative strengths of the
items of evidence, and with other authors (Lane et al. 1987; Lane 1989) they have
suggested a bayesian probabilistic approach, in which the probability of causation is
explicitly calculated. We emphasize that, in the following development, we do not
claim that the idea of ‘causation’ can be uniquely defined. A variety of
interpretations are possible, but we shall try to be precise as to which we are using
in any context. As we shall find in §5, one of the major strengths of the bayesian
graphical approach is that it allows a number of quantities to be calculated, each of
which could be argued to be the probability of ‘causation’.

Suppose there are two competing causes, A and B, of a specified type of reaction
E, where B could represent ‘natural causes’. Let 4 - FE denote the event that H
occurred and that 4 alone ‘caused’ K, which we take to mean that if A alone had
been given then £ would still have occurred exactly as it did (in the following sections
we consider assigning joint responsibility to two drugs simultaneously). Let the
background information (type of patient, drug dosage and schedule, class of reaction,
time horizon within which the occurrence of the specific clinical problem is
considered as a reaction) be denoted by M. Then the odds on 4 against B causing the
reaction, before incorporating the occurrence of specific details of the reaction, are

pA—E|M)/pB~E|M). (1)

After detailed findings F are obtained (e.g. timing of the reaction relative to time of
taking the drugs, effects of dechallenge, rechallenge, etc.), the revised posterior odds
are, by Bayes’s theorem,

pA—=>E|\F.M) pF|A-EM) pd-—>E|M)

pBE| P~ p(F|B B, pB>E|) @)

or
posterior odds = relative likelihood x prior odds.

The relative likelihood is an assessment of how much more likely is the specific case
evidence were 4 to have caused the reaction as against B. Figure 1 displays a ‘high-
level’ representation of the process being modelled.

The arrows indicate dependencies to be taken into account when considering the
probability of any random (elliptical) node in such a graph (rectangular nodes
indicate fixed context). Thus figure 1 represents terms in expressions (1) and (2): the
probability of each possible cause depends directly on case parameters (M), while the
probability of case findings (#') depends on both cause and background parameters.
The crucial element is that while a graph may be constructed by thinking causally,
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| case parameters !
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f ' prospective
4 | p(CIM)
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p(CIF,M) o p(FIC,M) X p(C M)

F

Figure 1. Overview of process being modelled : prospective modelling of causal mechanism given
case parameters, and specific case findings given case parameters and cause. After observing F,
Bayes’s theorem ‘reverses the arrow’” between C' and F, and allows the calculation of the posterior
probability of cause given M and F.

Table 1. Background and reaction details of patient (timings relative to start of drug A)

background information M
patient female, aged 29
drugs given antibiotic 4 day O-day 10
antibiotic B day 12-day 22

reaction observed pseudomembranous colitis (pPmc)

details (F) of reaction
timing occurred on day 27

when specific case findings are actually observed this diagnostic evidence needs to be
propagated back to the causal action node. Figuratively the arrow from causal action
to case findings needs to be reversed; technically this is precisely the role of the
likelihood terms used in Bayes’s theorem (2).

In many examples it may be reasonable to assume the items of evidence in D are
conditionally independent given the true cause, and then the relative likelihood
breaks into a product of terms that may be individually assessed. Examples of such
analyses are given in the Proceedings of a Drug Information Workshop (1986).
However, we now introduce an example which appears to demand additional
sophistication in its probabilistic modelling.

3. A specific example of a reaction

We now consider an actual case report received by the drug surveillance
department of a pharmaceutical company. The relevant background and details of
the reaction are given in table 1.

In a typical scoring system each drug is assessed individually without directly
comparing their likelihoods of having led to the event. In contrast, a probabilistic
approach as described in the previous section would first assess the prior odds that
A rather than B would cause a reaction within some time horizon that defines the
occurrence of a reaction, and then assess the relative likelihood of the reaction

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. Schematic diagram for process under study. The top level represents the timing of the
treatment of the patient, and the possible ‘window of susceptibility * is shown below. Next comes
the exposure process to C. difficile, which is shown as being intensified while the patient is in
hospital. If exposure occurs within the window of susceptibility then overgrowth is assumed to
happen, followed a variable number of days later by clinical evidence of colitis.

occurring on day 27 (the only detailed information), given it occurred within the
specified horizon. See Hutchinson et al. (1991a) for an example of such an analysis
using a spreadsheet program.

Such an assessment is, however, somewhat unsatisfactory since a considerable
amount is known about the mechanism by which an antibiotic can lead to the
development of PMc, and a conscientious assessment should take this knowledge into
account, explicitly and quantitatively. In collaboration with an expert micro-
biologist, Dr Douglas Burdon, we have developed a formal model to describe this
process. Specifically, an antibiotic depletes the bowel flora in such a way that, if the
patient is then exposed to the particular virulent bacterial organism Clostridium
difficile (abbreviated to C. difficile), this organism may colonize the gut. It is this
overgrowth that after a few days will lead to clinical signs of pMc-induced diarrhoea.

The process is shown in figure 2. A drug is started at time 7' (taken as 0 in the
computer analysis) and taken until time W. Soon after 7' there is a chance that a
‘window of susceptibility ’ is opened up due to modification of gut flora (time S), and
this stays open until time £, which is some unknown period after the drug is stopped.
In all our analysis we have assumed that § =741 if the patient becomes
susceptible; i.e. if the drug is going to alter the gut flora, it does so by the end of the
first day of treatment. Meanwhile, and quite independently, there is an ‘exposure
process’ going on in which each day there is a certain chance of being exposed to C.
difficile. The day of first exposure after time 7'+ 1 is the ‘relevant’ exposure day (X).
If this occurs within the window of susceptibility, then on this day overgrowth occurs

Phil. Trans. R. Soc. Lond. A (1991)
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(0), and soon after colitis is observed (C). The diagram shows that if the patient is
in hospital, particularly in a ward where there is an epidemic of C. difficile, then the
exposure rates may increase dramatically.

Various additional complexities may be relevant. First, after two drugs have been
given, then even if they act independently both may have their windows of
susceptibility open when an exposure occurs and so the unique cause is not
ascribable, i.e. if either drug had not been given the reaction would still have
occurred, but equally if either drug had been given alone the reaction would have
occurred. Secondly, hospitalization and the existence of an epidemic may change the
daily exposure rate. Thirdly, it is possible that certain antibiotics, particularly when
given intravenously, may actually ‘block’ overgrowth while they are being
administered since they may also act on C. difficile, and hence relevant exposure can
only take place after the drug has been stopped. Finally, most of the relationships
described in the model are stochastic and their parameters can only be assessed
subjectively by expert microbiologists on the basis of limited experience : examples
include the daily chance of exposure of C. difficile in the community, the extent to
which susceptibility continues after the drug is stopped, the chance an individual
becomes susceptible at all and the lag between overgrowth and development of
colitis.

The complexity of the problem strongly suggests that intuitive assessments of
likelihood ratios may not be reliable, and hence we have investigated a formal
analysis using a graphical approach that uses recent developments within the general
context of expert systems.

4. A bayesian graphical representation of the causality assessment problem

Systems intended to help clinicians classify patients into diagnostic or prognostic
states exist in similar degrees of development to those in causality assessment. There
are global judgments in which only structured information is available, algorithms,
developed either informally or based on data analysis, and scoring systems with their
weights again either assessed informally or through statistical discriminant analysis.
Recent work in artificial intelligence in medicine has, however, emphasized the use
of causal networks, in which an attempt is made explicitly to model the qualitative
medical knowledge that is available concerning the disease processes under
consideration (Szolovits ef al. 1988). These models are represented by directed graphs
in which links represent direct influences, and absent links indicate conditional
independence assumptions. Attached to these links are conditional probability tables
that quantitatively express the uncertainty on the links, and the aim is to be able to
observe fragmentary evidence, possibly sequentially, on parts of the graph, and
propagate the effect of this evidence through the graph to revise the probability of
the nodes of direct interest. Such graphical representations have a long history,
beginning with Wright (1934) and continuing in the areas of structural modelling in
the social sciences, while there is also a clear relationship with the pedigree graphs
used in genetics (Thompson 1986).

In our context we need to develop a directed graphical representation for the
qualitative mechanism by which a reaction might occur when one or two antibiotics
had been previously taken, and provide assessments of the necessary conditional
probability distributions. The theory for probability calculations on such networks
has been developed by Pearl (1986, 1988) and Lauritzen & Spiegelhalter (1988), and
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in §6 we describe the computational algorithm by which these initializing conditional
probabilities may be manipulated to allow efficient calculation of the required
outputs once evidence on a case has been obtained; the required outputs will
generally be the probabilities of causation and the evidence will generally be the day
on which colitis is noted, although the computational procedures are not restricted
to these circumstances.

There are four main stages in constructing a network and turning it into a
representation ready to receive evidence, and two further stages in processing
evidence as it arrives.

(a) Representation of the qualitative knowledge as a directed acyclic graph (pAg)

The nodes of the graph are random variables and direct influences of a node v are
‘parents’ of v (denoted pa (v)) in the graph. Formally, the graph represents the
assumption that the joint distribution of the whole set V can be expressed as

p(V) =11, p(|pa(v)), (3)

i.e. the joint distribution is made up of terms which model the conditional
distribution of each node given its direct influences. This is equivalent to a
conditional independence assumption that, if we are told the values of pa (v), then v
is independent of all other nodes in the graph except direct descendants of v (see
Lauritzen et al. (1990) for a full description of the conditional independence
statements that can be read off a paa). Such assumptions follow naturally in a
context such as genetics (Thompson 1986), in which a child’s genotype is only
directly influenced by its parents, and so if the parents’ genotypes are known then
no other individual in a pedigree provides information about the child’s genotype
(apart from descendants of the child). The essence of our approach is to make similar
conditional independence assumptions within other domains, and then exploit (3) to
allow the full joint distribution to be obtained by a set of assessments of individual
terms p(v | pa(v)).

We first consider the simplified situation in which only one drug has been taken;
this is appropriate if we were to assume either A or B was the cause of the reaction,
with no allowance made for simultaneous causation. Thus in each one-drug model we
are assuming we know the causative agent, but we may use the model to calculate
prior and likelihood terms for A and B individually, to be processed using (2).

Figure 3 shows a network representation of the essential elements of the complex
processes summarized in figure 2. Each elliptical node represents a random quantity,
specifically the time, including oo to represent ‘never’ where appropriate, of the
critical events defined in the legend. The boxes represent fixed contexts defined by
the background information on the case. The ‘expert’ biological knowledge allows us
to make the conditional independence assumptions represented by the graph; for
example, that given the day on which overgrowth occurs, the day on which colitis
first appears is independent of all other events in the network. Each such assumption
translates into a formal conditional probability statement, for example, p(C| O, other
events) = p(C| 0), and we obtain from (3) an expression for the joint distribution of
all the unknown quantities:

for which we need only obtain assessments of the distribution of each quantity
conditional on its direct influences (parents) in the graph. Once we have such

Phil. Trans. R. Soc. Lond. A (1991)
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drug
started
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ization

end of
suscep-
tibility

relevant
exposure

Figure 3. Graphical model of process when only one drug is being taken. Case parameters: H, days
of entering and leaving hospital ; 7', day treatment started ; W, day treatment withdrawn. Internal
variables: X, day of first relevant exposure to C. difficile; S, day of start of susceptibility to
overgrowth ; £, day susceptibility ends; O, day overgrowth occurs. Case findings: C, day colitis
appears.

assessments the joint distribution can be represented in a suitable decomposed form
and, given any evidence on any node in the graph, conditional probabilities of other
nodes can be obtained by the procedures outlined in §6.

(b) Quantitative conditional probability distributions

This brings us to the second stage of specifying quantitative conditional
probability distributions for each variable v given each configuration of its parent
nodes. In genetics these may be generated by known inheritance laws, but in general
they may be considered parameters of the system that need to be either estimated
from data or subjectively assessed. It is clearly essential to use relevant data if it is
available, but in this context no analytic study has apparently been performed. We
therefore consider specific models for each of the terms in (4), and provide some
numerical assessments based on the judgement of Dr Burdon.

In our application the assessments have been specified to point values as if they
were precisely known, but Spiegelhalter & Lauritzen (1990) show how the conditional
probabilities can themselves be considered as random quantities that form an
additional layer on the graph, and formal bayesian analysis then allows updating of
the distributions on those probabilities as data accumulates over a set of cases. In
general we would view subjective judgements as essentially providing a ‘head-start’
in order to begin a system, and Spiegelhalter & Cowell (1991) show that, if the
subjective assessments are assumed to be fairly imprecise then they are rapidly
overwhelmed by accumulating data. The possibility of adopting such a ‘learning’
procedure within adverse drug reactions is touched upon in our conclusions.

Node X : day of first relevant exposure to C. difficile. We assume that the first possible
relevant day of exposure is 7'+ 1 and, in the absence of evidence to the contrary,
assume that thereafter daily exposures are independent events with probability A(d)

Phil. Trans. R. Soc. Lond. A (1991)
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on day d, which may depend on whether the patient is in hospital (H). Hence the
distribution of the day of first exposure is assumed to be a geometric distribution
a—1

pX=d|H) =AXd) I {1-A@t)} (d=T+1,T+2,...).

t=T+1
Initial values for the daily risks have been set at

0.0002, if patient is outside hospital on day d,
A(d) =4 0.01, if patient is in hospital on day d,
0.9, if there is a known epidemic of C. difficile on day d in the
hospital.

Node S: day of susceptibility of overgrowth. We assume that susceptibility to
overgrowth occurs with probability o, and if it does occur then is on day 1. Hence
the distribution for S is S = T+1|T) =0,

pS=00|T)=1—0.

A typical value for o might be 0.9. This quantity is the essential determinant of the
adverse risk associated with the drug, and we shall later discuss the issue of learning
about this crucial parameter from epidemiological data.

Node E : the day susceptibility ends. If susceptibility has occurred, then it is thought
to be certain to continue for a period, say g days, after the drug has been stopped
(day W). After this, the susceptibility may or may not continue for some time. We
have modelled this by a geometric distribution that results from assuming there is
a chance m, known as the susceptibility stop-rate, of ceasing to be susceptible on any
day. Thus the distribution for £ is given by

if susceptible; p(E =d|S=T+1,W)=m(1l—m)* V971
(d=W4+g+1, WHg+2,...);
if not susceptible; p# = |8 =00, W)=1.

After extensive discussion, values of ¢ = 5 and m = 0.05 have been assessed, which
gives an expectation of about 3.5 weeks for susceptibility continuing after the drug
is stopped.

Node O: the day overgrowth occurs. This is assumed to follow logically as soon as
relevant exposure occurs while the patient is susceptible, and to happen on the day

on which this combination of circumstances first occurs. Thus O is defined logically
in terms of its influences X, S and £, and to have distribution as follows:

if susceptible; p(O=d|X =d,S=T+1,E)
[1 if T+1<d<UE,
o if E<d
if not susceptible; p(0 =0w0|X,8 =0,F =0w) = 1.

Node C: day colitis appears. There is a lag of a few days between overgrowth
occurring and the symptoms of colitis becoming apparent, and we assume a discrete
distribution

p(C=d|0)=pd—-0) (d=0+1,0+2,...).
A plausible distribution assumes p(2) = 0.47, p(3) = 0.47, p(4) = 0.05, p(5) = 0.01.

Phil. Trans. R. Soc. Lond. A (1991)
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5. The two-drug model

We now consider the graphical representation of the two-drug model shown in
figure 4 (the background parameters have been left implicit). This has two
highlighted components that exactly match the one-drug model considered above, in
that an exposure process interacts with a susceptibility process to lead to overgrowth.
However, the individual models for the two drugs do meet in two aspects: they have
a common exposure process (shown at the top of the graph) and they have a possible
common consequence in the development of colitis. We now step through the graph
and provide details of the dependencies and any additional numerical assessments.
It should be clear that the representation shown below was not immediately
apparent, and modelling the process with an appropriate graphical structure took
some time and many false starts.

Nodes Y, X, and X, : the exposure process. The graphical formulation of the exposure
process expresses that relevant exposure may occur for the first drug before the
second is started, but if it does not then any subsequent exposure is relevant to both
drugs simultaneously. Hence Y and X, are independent variables that summarize
first relevant exposure within two disjoint intervals, and X, is logically derived in
that X, = Y if Y is not infinity, and X, = X, otherwise. Formally, we have that

a-1
pY=d|H=Ad) II {1—-A@¢)} d=T+1,1+2,..,T),

t=T,+1

T2
p(Y = |H)= TII {1-A(@)}

t=T,+1
a-1
X, =d|H)=Ad) TI {1-AW)} (d="T+1.T,+2, ..).
t=Ty+1
If Y#0, pX,=d|Y=dX,)=1.
If Y=, pX,=d|Y=0,X,=d)=1,

which simply expresses that X; = min {Y, X,}. The numerical values for the exposure
process are as in the one-drug model.

Nodes S, E,, 0,, S,, By, O,: the individual drug models. These are as described for
the one-drug model adapted to the particular times for taking each drug, but
possibly using drug-specific assessments for the susceptibility o and the delay m in
losing susceptibility.

Nodes O, I, and I,: the overgrowth process. Nodes O, and O, represent the potential
for causing overgrowth ; to model the actual overgrowth that leads to symptoms we
need to define O as the minimum of O, and O,. The indicator variables I; and I, then
show which of the drugs was responsible for the overgrowth, allowing for the fact
that it is feasible that both windows of susceptibility were open at the common time
of relevant exposure X; = X,; hence O, = O, and both drugs could be held equally
responsible. Formally, we have that

1 if0O=0,, 1 if 0= 0,,
0 = min{0,, 0,}; Il={ 1 ={

0 otherwise; 0 otherwise.

The conditional probability tables for O, I, and I, are then degenerate with ones in
the appropriate positions.
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| 2 %
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Figure 4. Graphical model of process when two drugs 4 and B have been administered, starting on
days T} and T} respectively. Exposure: Y, day of first exposure unique to first drug (i.e. between
T, +1 and 7T} inclusive); X,, day of first exposure relevant to first drug (i.e. after 7' +1); X,, day
of first exposure relevant to second drug (i.e. after 7,+1). First drug: S,, day of start of
susceptibility due to first drug; £, day susceptibility due to first drug ends; O,, day of potential
overgrowth due to first drug. Second drug: S,, day of start of susceptibility due to second drug;
E,, day susceptibility due to second drug ends; O,, day of potential overgrowth due to second drug.
Causation: O, day of actual overgrowth; I,, actual overgrowth caused by first drug; /,, actual
overgrowth caused by second drug. Case findings: C, day colitis appears.

Node C': the colitis symptoms. This is exactly as for the one-drug model.

We note that this representation allows a number of different interpretations for
‘causation’ to be simultaneously considered. If we observe colitis to have occurred
on a particular day C, and then interrogate, say, I,, we find the probability of
causation by drug 4 in the sense that exactly the same event would have occurred
had drug B not been given. Since p(I,|C) gives the probability that the exact
adverse event would have occurred if B alone had been given, we have that
p;]C)+p(,|C)—1 is the probability of ‘joint causation’, in the sense that at first
relevant exposure both drugs would have led to the window of susceptibility being
open. Thus we can decompose the blame into three components:

1—p(l,| C): the probability that 4 alone caused the reaction,
1—p(,|C): the probability that B alone caused the reaction,
p;1C)+p(l,]| C)—1: the probability of joint causation.

Alternatively, the probability that O, is non-zero represents the chance that drug 4
would have led to colitis at some point in the future, even if the actual overgrowth
observed was due to drug B. Finally, we could examine the probability of S;, which
represents the event that drug 4 made the patient susceptible to overgrowth, even
if in this case the patient was fortunately not exposed in the appropriate interval.
Each of these events could be argued to be relevant to ‘causation’, and an advantage
of a realistic model is that a unique definition need not be sought.
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@ (x) ) (X)) () @
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Figure 5. States of graphical re-representation for the one-drug problem. The original network (@)
is turned into a moral graph (b) by adding links between co-parents, and dropping directions. Since
this graph is already triangulated, its cliques can be arranged as a clique-tree (c).

6. Computational techniques based on graphical models

Having formally specified the joint distribution as the product of terms (4), we
need to be able to calculate efficiently quantities of interest, such as the marginal
probability of colitis occurring, or the chance of causation by drug 4 given colitis is
observed on a particular day. The representation (4) is not appropriate for such
calculations, since it would not be feasible to perform the multiplication and store the
full joint distribution in the computer memory. Pearl (1986) showed how, if the
graph had the structure of a tree (no cycle in the undirected graph formed by
ignoring the directions on the links), then the required results could be obtained
using only ‘local’ computations without specifying the full distribution. Fur-
thermore, there is no need to have an overall controller of the process; each node
communicates autonomously with its neighbours in the graph. Problems arise when
loops occur in the graph, as in our examples, and Lauritzen & Spiegelhalter (1988)
showed that local computations can still be used provided a new representation is
found for the joint distribution that is related to an undirected graph, derived from
the original pac, but with a specific property. This stage of graphical re-
representation requires five steps:

1. Add an undirected link between all co-parents that are currently unjoined.

2. Drop all directions in the graph. (This forms the so-called ‘moral’ graph.)

3. ‘Triangulate’ the graph by filling-in sufficient additional links to ensure that
there is no cycle of length 4 or more without a short-cut.

4. Identify the cliques of this triangulated graph as the maximal sets of nodes that
are all neighbours of each other.

5. Join the cliques together as a tree, which has the special property that if a node
v is contained in any two cliques C' and D, then v is also contained in all cliques on
the unique path between €' and D in the tree.

Those unfamiliar with this area may be somewhat mystified by such a sequence of
graph-theoretic operations, and we try to give a short probabilistic justification as we
step through the examples: see, for example, Lauritzen & Spiegelhalter (1988),
Jensen et al. (1990), Andersen et al. (1989), Shenoy & Shafer (1988) and Dawid (1991)
for further theoretical exposition.

Figures 5 and 6 show these five steps of graphical re-representation carried out to
the one-drug and two-drug model. After steps (1) and (2) we are left with an
undirected graph whose cliques (sets of nodes who are all joint neighbours) comprise
a node and its parents. Referring to expression (3) we see that the joint density is a
product of terms defined on this clique set. We therefore have a Markov random field
defined on the moral graph, and we may use the independence properties derived
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Figure 6. Graphical re-representation of the two-drug model (a). In this case an additional link is
required to triangulate the moral graph (b), which then allows the cliques to be arranged as a
clique-tree (c).

from undirected graphs that are more usually exploited in applications such as image
processing (Isham 1981). More relevantly, there is a growing interest in graphical
representations for contingency table models (Edwards & Kreiner 1983). Darroch
et al. (1980) show how decomposable models (those whose joint distributions can be
expressed wholly in terms of the marginal distributions on the cliques) correspond to
triangulated graphs in the sense described above, and step (3) (filling in additional
links to make triangulated) ensures that from now on it will be sufficient to derive
the appropriate clique marginals; essentially we have embedded our original
structure in one that is more complex, in that some of the conditional independence
assumptions are no longer apparent from the graph, but allows much simpler
analysis.

The moral graph of the one-drug model requires no triangulation, whereas the two-
drug moral graph has a cycle {X,,X,, O,, 0;}. To short-circuit this cycle a single link
has to be introduced, which could be either X,-0, or X,~0, as chosen.

Triangulated graphs have been extensively explored in the relational database
literature (Tarjan & Yannakakis 1984) and it is known that the cliques (step (4)) of
such a graph have the powerful property that a join-tree, as defined in step (5),
always exists. This means that when evidence arrives concerning any particular
node, its implication can be propagated to any other node through the tree without
any global bupCI’VibiOD to prevent inconsistencies ; each clique can act autonomously
in receiving and passing on ‘messages’ from its neighbours. The clique tree for the
two-drug model illustrates this property well: node O, occurs in five cliques, but
these form a chain in the tree. lach clique in the trlangulated graph forms a node in
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the clique tree, and the separator sets are the clique intersections through which the
messages pass. We note that each of the separator sets also separates the original
directed graph into two or more components.

Before considering the exact form of the messages, we need to complete the next
stage in getting the network ready to receive evidence; whereas the preceding stage
involved the qualitative graph, we now need to consider the quantitative aspects. We
have seen how the joint distribution was originally expressed as a product of
functions on nodes and their parents, and we now need to express it as a product of
functions ¥ and ¢ defined on the cliques and their separators respectively. These
functions are called potentials and we shall see below how this representation
facilitates the required computations. Specifically, we require a joint distribution
expressed as

§) = 11 yte) | 11 g0y, 5)
CeC SeS

where C and S are the sets of cliques and separators respectively, and v, and vg

indicate nodes in sets C' and S respectively. Now, since the model is decomposable we

have that a particular potential representation takes the form

p(V) =11 p(vc)/ﬂp(vs)’ (6)
CeC

where p indicates the marginal distributions on the cliques and separators. From this
representation the marginal distributions on any single node v may be easily
obtained from the distribution on any clique which contains . The essence of our
approach is a general algorithm for going from any potential representation (5) to a
clique marginal representation (6); once this is available we need only show that the
representation (5) is not only easily obtained from the original conditional probability
form (3), but also that the form (5) is retained when evidence on any nodes is elicited.
We shall first show that the potential representation (5) is present at initialization
and is retained under conditioning, and then describe the propagation algorithm for
deriving (6) from (5).

Comparison of expressions (3) and (5) shows that the potential representation is
straightforward to achieve at initialization: we need only set the original clique
potentials (v.) as the product of conditional probability tables corresponding to any
node which, with its parents, lies in the clique. For example, in the one drug model
the clique potential on {X, S, £, O} is initialized to be p(X)p(S)p(E|S)p(0O|X,S, E),
while in the two drug model the potential on the clique {0,,0,,0} is set to
p(0]0y4,0,). For many cliques, for example {X,,0,,0,}, the initializing potential
function can be considered to be unity since no node and its parents lie in that clique.
All potentials ¢(vg) on clique separators are set to unity.

We now have a joint distribution expressed in terms of functions on cliques and
their separators, and the next step is to show that this representation will hold
whatever evidence is received on the network, i.e. for any observation W = w,
p(VA\W|W = w) can be expressed in the form (5). This is not difficult to see, since we
always have p(VA\W|W = w) oc p(V\W, W = w); thus to absorb evidence a clique con-
taining the node that has been observed is selected and any potential not defined on
the observed value is set to zero. This may occur at various parts of the network
before propagation takes place.

We now consider the propagation algorithm. First, a root clique is arbitrarily
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Figure 7. Sequence of message-passing in clique tree for two-drug model. The root-clique sends out
a message to ‘collect evidence’, and then evidence is propagated back to the root. Finally, the
collected evidence is distributed through the tree, giving the correct clique posterior distributions
which can be marginalized to their constituent nodes.

selected in the clique-tree. It sends out a message collect evidence’ to its neighbours,
who communicate it to their neighbours until it reaches the ends of the tree. Each
clique then collects evidence from those neighbours further from the root clique,
using the fundamental operations shown below for passing a message from clique C
to clique D through separator S.

(i) Marginalize yr(v) to ¢'(v) = 2, Y (vc)-

(ii) Multiply ¥ (vp) pointwise by ¢'(vg)/P(vsg).

(iii) Replace ¢(vg) by ¢'(vg).

The process of message-passing is shown in figure 7, which emphasizes that in
collecting evidence each clique must await the messages from its more distant
neighbours before passing on towards the root. When finally the root clique has
collected evidence from its immediate neighbours, it normalizes its new potential to
add to unity; this is the correct marginal distribution for the root clique. It then
distributes evidence, which involves the same message-passing operation but
working back through the tree. When this is complete all cliques and separators will
hold their correct marginal distributions from which the current distribution for any
node can be easily derived. The algorithm described above is a simplification of that
described in Lauritzen & Spiegelhalter (1988), and proofs that these operations lead
to this conclusion may be found in Jensen et al. (1990); Shenoy & Shafer (1988)
provide an axiomatic basis for a general propation scheme, while Dawid (1991)
provides numerical examples and generalizes the algorithm to solve many related
problems on networks.

The above procedure allows for many facilities, such as easily retracting the items
of evidence, exploring influential observations, and planning future questions
(Lauritzen & Spiegelhalter 1988). Moreover, some simplifications are possible within
specific circumstances. For example, once an initial clique marginal representation
has been obtained, the effect of single items of evidence may be propagated using
only distribute evidence and hence only a single pass through the network. Also, if
only certain nodes of the network are of interest, it may be only necessary to
propagate single items of evidence the necessary distance; for example, in the two-
drug network, from a clique containing C to the first cliques containing I, and I,.
Finally, we could perform sensitivity analyses by varying the quantitative
assessments along plausible ranges in order to calculate intervals for the probabilities
of interest.
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Figure 8. For each drug given considered singly, the probability of colitis occurring on each
day, given it occurs at some time. x, Drug 4 alone; o, drug B alone.

7. Examples

Our first example was introduced in §3. For illustrative purposes, we assume the
two drugs have some distinct characteristics: while drug 4 is as described in §4, with
susceptibility risk o, = 0.9 and susceptibility stop-rate m, = 0.05 per day, drug B
has susceptibility risk oz = 0.2 and susceptibility stop-rate myz = 0.15 per day.
Otherwise the parameters are taken to be those given in §4. Each drug is first
considered separately with the one-drug model, from which we calculate that their
prospective probabilities of causing pmc are 0.0058 and 0.0008, respectively, whose
ratio 7.25 provides the prior odds on 4 against B causing a reaction (expression (1)
in §2). Conditionally on causing a reaction at some currently unspecified time, the
predictive distributions of C, the day of colitis, are shown in figure 8; the
distributions are very flat until about a week after the drug is stopped, when they
begin to tail off. Clearly, changing relevant parameters could shorten or extend this
period. These conditional distributions have ordinates 0.019 and 0.050 for day 27,
giving a likelihood ratio of 0.38 for Bayes’s theorem (expression (2) in §2). Therefore,
if we were to assume that one and only one of the drugs was responsible, our posterior
odds on 4 against B given the case-specific evidence would be 0.38 x 7.25 = 2.76, or
a probability of 0.73 for 4. These posterior odds could also have been obtained
directly as the ratio of the unconditional predictive probabilities of colitis occurring
exactly on day 27 under each drug given singly.

However, a more realistic analysis exploits the two-drug model to allow for
the possibility of joint responsibility. When we condition on knowing €' = 27,
this evidence propagates through the network using the techniques described in
the previous section to provide posterior probabilities p(/,|C = 27) = 0.862 and
p,|C =27) = 0.310, which decompose into probabilities of 0.690 on A alone,
0.138 on B alone, and 0.172 on joint causation.

These conclusions may, however, be sensitive to information available on the
hospitalization of the patient. Suppose, say, that it is known that the patient spent
from days 5 to 10 in hospital, although no epidemic of C. difficile has been reported.
Including this information in the two-drug model leads to the probabilities of
causation shown in table 2. This very slightly shifts the blame to drug B. However,
this is greatly magnified if we suppose that an epidemic has occurred in the hospital.
This change is explained by examining the distribution on other nodes in the network
that reveal, for example, that in these circumstances p(S, | € = 27) = 0.0003; i.e. that
the first drug almost certainly did not induce susceptibility, even though it was of
high risk of doing so. This becomes a more intuitive conclusion when one realizes
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Table 2. Probabilities of causation under different assumptions

drug 4 alone drug B alone both 4 and B

assuming no joint causation 0.73 0.27 —
(two one-drug models)

two-drug model 0.690 0.138 0.172

hospitalized days 5-10 0.689 0.139 0.172

exposed to epidemic days 5-10 0.0003 0.9997 0

that, if drug 4 had induced susceptibility, then in such a high-risk environment
overgrowth and colitis would almost certainly have occurred very much earlier than
was actually observed.

8. Discussion and conclusions

The models described above have been programmed in C' on a personal computer
(Cowell et al. 1991), and the program allows interactive examination of the effect of
changing the context and assumptions concerning the relevant parameters that
influence the conditional probability tables. The program is currently being
evaluated by the drug surveillance unit of a pharmaceutical company and, although
no formal evaluation has taken place, examples such as that above have been
presented to both expert assessors of Aprs and to microbiologists, who felt that it
mirrored their considered judgement. The aim of such systems is to formalize and
make available the expertise of the microbiologist in the routine assessment of cases,
and so a formal peer review study is one form of evaluation. A more statistical
criterion is whether or not the predictions made by the model accurately reflect the
risks of developing the disease, and it is clear that some additional factors will need
to be taken into account to make the model adequately realistic.

One issue is blocking, as mentioned in §2, in which a drug may induce
susceptibility but might still prevent overgrowth while it is being taken. The
tendency for this to occur depends on both the specific drug and the route of
administration, with a higher chance of blocking if given intravenously rather than
orally. This phenomenon has the effect of making irrelevant any exposure to C.
difficile while the drug is being taken, and so is easily handled within our framework
by introducing a ‘blocking’ node as a direct influence on the exposure node X. The
chance of the blocking node being positive is influenced by the drug and route of
administration, and if negative has no effect on X, while if positive shifts to zero the
exposure rate (d) for d between day 7' of starting the drug and day W of withdrawal.
The effect of introducing this node is to adjust our probabilities of causation for the
possibility that one or other of the drugs was blocking overgrowth.

Adequacy of the model’s predictions depends both on the qualitative structure,
about which we feel fairly confident, and the assessed parameters, which may be
open to more argument. This naturally brings us to the crucial issue of learning
about the parameters as data on a number of cases accumulate. A parameter of vital
interest to pharmaceutical companies is the susceptibility rate o, whose size is the
main determinant of the safety of the drug with respect to this particular reaction.
If we acknowledge the uncertainty concerning this parameter, then it is possible to
consider ¢ a random quantity and include it in the graph as a parent node of S, the
day of susceptibility. Spiegelhalter & Lauritzen (1990) describe how one can then
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process a case using the current expected value of o, which is essentially the current
‘best guess’, but then revise our belief about o after case evidence has been obtained.
This revised belief is then carried over to the next case when a new estimate of o is
used for processing.

While this sequential updating process is attractive and is immediately appropriate
in contexts such as clinical diagnosis, there are a number of problems with using it
in the context of adverse reactions. The first problem is that we may not have
independent confirmation of the cause of the reaction, and cannot be definitive that
the drug caused susceptibility. While the formal bayesian updating procedure should
still update the susceptibility parameter to the appropriate extent, it might be rather
unsatisfactory to rest the condemnation of a drug on a set of cases in which it had
not definitely been found to be at fault. The second, and perhaps more important
problem, is the fact that a drug surveillance unit only hears of a highly selected
sample of cases, and that the reporting process could effect our opinion concerning
a particular drug. We are currently exploring the possibility of modelling the
reporting procedure, with the aim of examining the sensitivity of our conclusions to
reporting biases. One way in which a drug might be naively condemned due to
circumstantial evidence is when two drugs are routinely given in the same order, and
the second drug then will generally appear to have been more likely to have been the
causal agent, even if they had identical susceptibilities. We are confident that a
formal learning procedure will not be misled into systematically increasing the
susceptibility parameter of the second drug.

The models described in this paper have been developed incrementally, and
increasing realism has been accompanied by inevitable additional complexity.
However, we have been impressed by the way in which the original network
formalism has been able to adapt in a modular fashion to these demands, and we feel
confident that problems such as those outlined above can be incorporated into the
formalism. In addition, we are now attempting to model other classes of reaction
along similar lines. While laying no claim as to the absolute correctness of either the
qualitative or quantitative components of the models, we hope that their explicitness
points the way to a more coherent analysis of many classes of adverse drug reactions.

We are indebted to Douglas Burdon and Sue Roden for their contribution to the project. Stephen
Senn made many valuable criticisms. Financial support was provided by Glaxo Group Research
Ltd and the Science and Engineering Research Council.
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